Бактерии относятся к

Виды микроорганизмов

Человеческий организм населяют и полезные и вредные бактерии. Существующий баланс между организмом человека и бактериями отшлифовывался веками.

Как подсчитали ученые, в организме человека содержится от 500 до 1000 всевозможных видов бактерий или триллионы этих удивительных жильцов, что составляет до 4-х кг совокупного веса. До 3-х килограмм микробных тел находится только в кишечнике. Остальная их часть находится в мочеполовых путях, на коже и других полостях человеческого тела. Микробы заполняют организм новорожденного уже с первых минут его жизни и окончательно формируют состав кишечной микрофлоры к 10-13 годам.

В кишечнике обитают стрептококки, лактобактерии, бифидобактерии, энтеробактерии, грибы, кишечные вирусы, непатогенные простейшие. Лактобактерии и бифидобактерии составляют 60% кишечной флоры. Состав этой группы всегда постоянный, они самые многочисленные и осуществляющие основные функции.

Бифидобактерии

Значение бактерий этого вида огромно.

  • Благодаря им вырабатываются ацетат и молочная кислота. Закисляя среду обитания, они подавляют рост патогенных бактерий, вызывающих гниение и брожение.
  • Благодаря бифидобактериям снижается риск развития аллергии к пищевым продуктам у малышей.
  • Они обеспечивают антиоксидантный и противоопухолевый эффект.
  • Бифидобактерии принимают участие в синтезе витамина С.
  • Бифидо- и лактобактерии принимают участие в процессах по усвоению витамина Д, кальция и железа.

Рис. 1. На фото бифидобактерии. Компьютерная визуализация.

Кишечная палочка

Значение бактерий этого вида для человека большое.

  • Особое значение уделяется представителю этого рода Escherichia coli M17. Она способна вырабатывать вещество коцилин, которое угнетает рост целого ряда болезнетворных микробов.
  • При участии кишечной палочки синтезируются витамины К, группы В (В1, В2, В5, В6, В7, В9 и В12), фолиевая и никотиновая кислоты.

Рис. 2. На фото кишечная палочка (трехмерное компьютерное изображение).

  • При участии бифидо-, лакто-, и энтеробактерий синтезируются витамины К, С, группы В (В1, В2, В5, В6, В7, В9 и В12), фолиевая и никотиновая кислоты.
  • Благодаря микрофлоре кишечника расщепляются непереваренные компоненты пищи из верхних отделов кишечника – крахмал, целлюлоза, белковые и жировые фракции.
  • Кишечная микрофлора поддерживает водно-солевой обмен и ионный гомеостаз.
  • Благодаря секреции особых веществ микрофлора кишечника подавляет рост патогенных бактерий, вызывающих гниение и брожение.
  • Бифидо-, лакто-, и энтеробактерии принимает участие в детоксикации веществ, попадающих извне и образующихся внутри самого организма.
  • Кишечная микрофлора играет большую роль в восстановлении местного иммунитета. Благодаря ей увеличивается количество лимфоцитов, активность фагоцитов и выработка иммуноглобулина А.
  • Благодаря кишечной микрофлоре стимулируется развитие лимфоидного аппарата.
  • Повышается устойчивость эпителия кишечника к канцерогенам.
  • Микрофлора защищают слизистую стенку кишечника и обеспечивает энергией кишечный эпителий.
  • Они регулируют перистальтику кишечника.
  • Кишечная флора приобретает навыки по захвату и выводу вирусов из организма хозяина, с которым долгие годы она находилась в симбиозе.
  • Велико значение бактерий в поддержке теплового баланса организма. Кишечная микрофлора питается за счет веществ, непереваренных ферментативной системой, которые поступают из верхних отделов желудочно-кишечного тракта. В результате сложных биохимических реакций вырабатывается огромное количество тепловой энергии. Тепло с током крови разносится по всему организму и поступает во все внутренние органы. Вот почему при голодании человек всегда мерзнет.
  • Кишечная микрофлора регулирует обратное всасывание компонентов желчных кислот (холестерина), гормонов и др.

Рис. 3. На фото полезные бактерии — лактобактерии (трехмерное компьютерное изображение).

Еще Пастер доказал, что в уксуснокислом окислении принимают участие особые микроорганизмы — уксусные палочки, которые широко встречаются в природе. Они поселяются на растения, проникают в созревшие овощи и фрукты. Их много в квашеных овощах и фруктах, вине, пиве и квасе.

shema-stroeniya-kletki-bakterii

Способность уксусных палочек окислять этиловый спирт до уксусной кислоты используется сегодня для получения уксуса, применяемого в пищевых целях и при заготовке кормов для животных — силосовании (консервировании).

Рис. 27. Процесс силосования кормов. Силос — сочный корм, обладающий высокой кормовой ценностью.

Изучение жизнедеятельности микробов позволило ученым применять некоторые бактерии для синтеза антибактериальных препаратов, витаминов, гормонов и ферментов.

Они помогают бороться со многими инфекционными и вирусными заболеваниями. Чаще всего антибиотики продуцируют актиномицеты, реже – немицеллярные бактерии. Пенициллин, полученный из плесневых грибов, разрушает клеточную оболочку бактерий. Стрептомицеты продуцируют стрептомицин, который инактивирует рибосомы микробных клеток.

Сенные палочки или Bacillus subtilis закисляют среду обитания. Они угнетают рост гнилостных и условно патогенных микроорганизмов за счет образования целого ряда веществ антимикробной направленности. Сенная палочка продуцирует ферменты, разрушающие вещества, которые образуются в результате гнилостного распада тканей. Они участвуют в синтезе аминокислот, витаминов и иммуноактивных соединений.

Используя технологию генной инженерии, сегодня ученые научились использовать кишечную палочку для производства инсулина и интерферона.

Ряд бактерий предполагается использовать для получения специального белка, который можно будет добавлять в корм скоту и в пищу человеку.

Рис. 28. На фото споры сенной палочки или Bacillus subtilis (окрашены в синий цвет).

Рис. 29. Биоспорин-Биофарма — отечественный препарат, содержащий апатогенные бактерии рода Bacillus.

Ещё в детстве нас учили тому, что надо мыть руки перед едой. Однако самые опасные микроорганизмы прячутся внутри испорченной пищи. Поэтому хочу рассказать вам о том, как защитить продукты питания от бактерий.

Микроорганизмы – это группа животных и растений очень малого размера, различить которые можно только при помощи микроскопа. Они могут быть вредными и полезными для человека, участвуют в природном круговороте веществ, процессах разложения органики, распада сложных веществ на более простые, брожении и т. д.

Микроорганизмы относятся к прокариотическим формам жизни, их клетки не имеют ядра, содержат мало органелл и устроены значительно проще, чем ядерные. Но несмотря на всю простоту такие клетки очень жизнеспособны, быстро размножаются и по степени выживаемости стоят выше, чем многоклеточные организмы. 

Микробы повсеместно распространены. Они есть в воде, на суше, в воздухе, на поверхности и внутри организмов. Продукты их выделения содержит ферменты, влияющие на органику в которой живут микроорганизмы. Среди них можно выделить симбиотические и паразитические формы.

Так или иначе, бактерии тесно связаны с высшим организмами и оказывают на них различные воздействия, в зависимости от штамма.

Среди полезных функций микроорганизмов можно отметить то, что они являются преобразователями органических веществ в почве и постоянно пополняют запасы минеральных соединений.

Бактерии перерабатывают экскременты человека и животных, разлагают отмершую органику до простых минеральных веществ, которые возвращаются в почву и становятся доступными для поглощения зелёными растениями, таким образом вовлекая вещества в новый круговорот. 

Многие бактерии живут в кишечнике животных и помогают переваривать труднодоступную растительную пищу, вырабатывая необходимые ферменты, а также витамины и незаменимые аминокислоты.

Обратите внимание

Среди полезных бактерий нужно отметить азотфиксирующие бактерии – симбионты бобовых растений.

Клубеньковые бактерии вступают в симбиоз с корнями фиксируя азот, который в дальнейшем используется растениями для построения клеточных тканей для роста.

Однако среди микроорганизмов есть многочисленные патогенные штаммы, способные вызывать сильнейшие заболевания и приводить к летальным исходам. Среди таких можно выделить холеру, сибирскую язву, тиф и другие.

Многие виды полезных микроорганизмов применяются в пищевой промышленности. Так производятся кисломолочные продукты – йогурт, кефир и сыр, некоторые используются для засолки и закваски, что предотвращает порчу продуктов.

Они изменяют химические и физические показатели продуктов, что в конечном итоге приводит к порче продукции и невозможности ее употребления в пищу.

В современной науке известно более миллиона видов микроорганизмов при том, что это наиболее распространенные и разнообразные формы жизни.

Как правило, они живут колониями, при этом постоянно взаимодействуют друг с другом и очень хорошо приспосабливаются к условиям окружающей среды.

Важно

Среди множества бактерий есть полезные и вредные для человека, живущие с ним в полезном симбиозе или являющиеся опасными паразитами организма.

К основным видам микроорганизмов относят следующие:

    1. Кокки – микроорганизмы имеющие округлую форму клетки, которые могут отличаться по взаимному расположению друг к другу. В зависимости от данного расположения их разделяют ещё на несколько групп. Например, клетки стрептококка выстраиваются в длинную цепочку шариков, диплококки существуют в форме двух соседствующих клеток, живущих постоянно в паре, стафилококки характеризуются тем, что их клетки в колонии расположены хаотично. При попадании в организм человека они способны вызывать серьезные заболевания. Однако, не все виды кокков являются вредными и могут существовать в симбиозе с организмом, не принося никакого вреда. Если у человека снижается иммунитет, то происходит вспышка размножения микроорганизмов и болезнь начинает прогрессировать.
    2. Палочковидные бактерии отличаются между собой размером, формой, могут образовывать споры. Бациллами называют бактерии способные к спорообразованию. К ним относятся палочки сибирской язвы и столбняка. Споры — это особые образования в жизни бактерий, предназначенные для переживания неблагоприятных условий. Клетка в данном случае покрывается твердой защитной оболочкой и способна длительное время пребывать в спящем состоянии, ожидая наступления благоприятных условий для развития. Некоторые споры настолько устойчивы, что способны переносить температуру более 120 градусов по Цельсию.
      • Клетки заостренными концами, например, фузобактерии. Они являются представителями нормальной микрофлоры дыхательных путей и не представляют опасности для человека, а скорее наоборот помогают нормальному функционированию эпителиальных покровов;
      • Клетки с утолщенными концами, по форме напоминают булаву. Явный представитель коринебактерия – возбудителем дифтерии;
      • Клеточные формы с закругленными концами. Представитель – кишечная палочка, которая является необходимой для пищеварения в кишечнике;
      • Палочковидные клетки с прямыми концами. Такая форма клетки у возбудителя сибирской язвы. 

Бактерии — Какие болезни вызывают бактерии, названия и виды

В этой статье мы рассмотрим бактерии.

Какие бывают бактерии: полезные и вредные? Разновидности бактерий, помогающие организму, а какие вредят?

Рассмотрим все бактерии, живущие в теле. И расскажем всё о бактериях.

Бактерии

Исследователи говорят о том, что на земле около 10 тыс. разновидностей микробов. Однако бытует мнение, что их разновидность достигает 1 млн.

В связи со своей простотой и неприхотливости, существуют они везде. Благодаря маленьким размерам, проникают куда угодно, даже в самую маленькую щелочку. Микроб приспособлены к любой среде обитания, они есть повсюду, будь это хоть засохший остров, хоть мороз, хоть жара 70 градусов, они все равно не потеряют своей жизнеспособности.

В тело человека микробы попадают из окружающей среды. И только попав в благоприятные для них условия, они дают о себе знать, либо помогая, либо вызывая начиная от легких кожных заболеваний и заканчивая серьезными инфекционными, которые приводят к смертельным исходам организма. У бактерий бывают различные названия.

Совет

Эти микробы самый древнейший вид существ, живущий на нашей планете. Появились примерно 3,5 миллиарда лет назад. Они на столько мельчайшие, что их видно только под микроскопом.

Так как это первые представители жизни на земле, они довольно примитивное. С течением времени их строение стало сложнее, хотя некоторые сохранили свое примитивное строение. Большое количество микробов прозрачные, но некоторые из них имеют красный или зеленоватый оттенок. Немногие приобретают цвет окружающей среды.

Микробы относятся к прокариотам, и поэтому имеют свое отдельное царство — Бактерий. Давайте рассмотрим какие бактерии безвредные и вредные.

Бактерии относятся к

Лактобактерии являются защитниками вашего тела от вирусов. Они проживают в животе с древних времен, выполняя очень важные и полезные функции. Lactobacillus plantarum обороняют пищеварительный тракт от бесполезных микроорганизмов, которые могут поселиться в желудке и ухудшить состояние.

Lactobacillus помогают избавиться от тяжести и вздутия в животе, бороться с аллергией, вызванной различными продуктами. Так же лактобактерии помогают выведению вредных веществ из кишечника. Очищает весь организм от токсинов.

Это микроорганизм, проживающий также в животе. Это полезные бактерии. При неблагоприятных условиях к существованию Bifidobacterium умирают. Bifidobacterium вырабатывают такие кислоты как, молочная, уксусная, янтарная и муравьиная.

Bifidobacterium выполняют ведущую роль в нормализации работы кишечника. Так же при достаточном количестве содержания их, укрепляют иммунитет и способствуют лучшему усвоению полезных веществ.

Они очень полезны, так как выполняют ряд важнейших функций, рассмотрим список:

  1. Пополняют организм витаминами К, В1, В2, В3, В6, В9, белков и аминокислот.
  2. Защищают от появления вредоносных микроорганизмов.
  3. Препятствуют попаданию вредных токсинов из стенок кишечника.
  4. Ускоряют процесс пищеварения. — Помогают всасыванию ионов Ca, Fe и витамина D.

На сегодняшний день существует множество лекарственных препаратов с содержанием бифидобактерий. Но это не значит, что при их использовании в лечебных целях будет благоприятное влияние на организм, так как полезность препаратов не доказана.

Вредоносные типы микробов могут появиться в наиболее неподходящем месте, где вы не ожидаете их встретить.

Данный вид Corynebacterium minutissimum очень любят жить и размножаться на телефонах и планшетах. Они вызывают сыпь по всему телу. Очень много приложений по борьбе с вирусами для планшетов и телефонов, но так и не придумали средства от вредной Corynebacterium minutissimum.

Так что следует уменьшить контакт с телефонами и планшетами, что бы у вас не появилась аллергия на Corynebacterium minutissimum. И помните, после мытья рук, не следует тереть ладошки друг о друга, так как уменьшается количество бактерий на 37%.

Стрептомицеты

Род бактерий, включающий в себя более 550 видов. В благоприятных условиях стрептомицеты создают ниточки похожие на грибной мицелий. Обитают в основном в почве.

Они содержаться в таких лекарствах как: эритромицин, тетрациклин и так далее. Являются производными медикаментов, борющиеся с: грибком, микробами (антибактериальные средства), опухолями.

В 1940 году стрептомицины применялись в производстве лекарственных препаратов:

  • Физостигмин. Болеутоляющее используется в маленьких дозах для снижения глазного давления при глаукомах. В больших количествах может стать ядом.
  • Такролимус. Лекарственное средство природного происхождения. Применяется для лечения и профилактики при пересадке почек, костного мозга, сердца и печени.
  • Аллозамидин. Препарат для предотвращения формирования деградации хитина. Благополучно используется при уничтожении комаров, мух и так далее.

Но следует заметить, что не все бактерии этого рода благотворно влияет на организм человека.

Микробы, существующие в животе. Она существует и размножается в слизистой оболочке желудка. Helicobacter pylori, появляются в организме человека с малых лет и живут на протяжении всей жизни. Помогают поддержанию стабильного веса, контролирует гормоны и отвечает за чувство голода.

Так же этот коварный микроб может поспособствовать развитию язвы и гастрита. Некоторые ученые считают, что Helicobacter pylori, полезна, но несмотря на ряд существующих теорий, еще не доказано чем же она полезна. Не зря его можно называть защитник живота. 

Бактерии относятся к

Бактерии Escherichia coli еще называются кишечные палочки. Escherichia coli, который проживает в нижней части живота. Они заселяются в тело человека при рождении и живут вместе с ним всю его жизнь. Большое количество микробов, данного вида безвредны, но некоторые из них могут вызвать серьезное отравление организма.

Escherichia coli является частым фактором многих инфекционных заболеваний связанных с животом. Но она напоминает о себе и доставляет дискомфорт тогда, когда собирается покинуть наш организм, в более благоприятную для нее среду. А так она даже полезна для человека.

Escherichia coli насыщает организм витамином К, который в свою очередь следит за здоровьем артерий. Так же Escherichia coli очень долгое время могут проживать в воде, почве и даже в продуктах питания, например в молоке.

Погибает кишечная палочка после кипячения или дезинфекции.

Staphylococcus aureus является возбудителем гнойных образований на коже. Часто фурункулы и прыщики вызваны Staphylococcus aureus, которая обитает на коже большого количества людей. Staphylococcus aureus является возбудителем многих инфекционных заболеваний.

Прыщики — это очень неприятно, но только представьте, что проникнув через кожу внутрь тела Staphylococcus aureus может приобрести серьезные последствия, пневмонию или менингит.

Он есть практически на всем теле, но основном золотистый стафилококк, существует в носовых проходах и подмышечных складках, но так же может появиться и в области гортани, промежности и животе.

Staphylococcus aureus имеет золотой оттенок, из-за чего и получила свое название золотистый стафилококк. Он является одним из четырех наиболее частых причин внутрибольничных инфекций, которые получают после операции.

Этот микроб может существовать и размножается в воде и почве. Очень любит теплую воду и бассейн. Является одним из возбудителей гнойных заболеваний. Получили свое название из-за сине-зелёного оттенком. Pseudomonas aeruginosa проживая в теплой воде, попадает под кожу и развивает инфекцию, сопровождающаяся зудом, болью и покраснением в пораженных участках.

Роль бактерий для человека

Этот микроб может поражать различные виды органов и вызывает кучу инфекционных заболеваний. Синегнойная инфекция поражает кишечник, сердце, органы мочеполовой. Микроорганизм часто является фактором для появления абсцессов и флегмон. От Pseudomonas aeruginosa очень трудно избавиться, так как она устойчива к антибиотикам.

Микробы являются самыми простейшими живыми микроорганизмами, существующие на Земле, которые появились много миллиардов лет назад, приспособлены к любым условиям окружающей среды. Но нужно помнить, что бактерии бывают полезными и вредными.

Обратите внимание

Итак, мы с вами разобрались с разновидностями микроорганизмов, на примере рассмотрели какие полезные бактерии, помогают организму и какие вредные, вызывающие инфекционные заболевания.

Помните, что соблюдение правил личной гигиены, будет лучшей профилактикой от заражения вредными микроорганизмами.

В организме человека обитает множество видов бактерий, среди которых выделяются полезные, патогенные и условно-патогенные формы. Рассмотрим особенности развития микробов, заболевания которые они провоцируют и способы заражения патогенами.

Ученые установили, что на Земле около 1 млн разновидностей микробов.

Существует мнение, что количество бактерий в организме человека превышает объем его собственных клеток в 10 раз. Однако последние исследования поставили под сомнение данный показатель. Согласно новым материалам, он варьирует в интервале от 1,5 до 2. Всего существует около 10 тыс. видов бактерий, которые приспособились к обитанию в различных условиях.

В организм человека они попадают из окружающей среды, в которой могут сохраняться длительное время. Патогенные формы являются возбудителями заболеваний, проявляющихся различной степенью интенсивности и опасности. Это может быть как легкая кожная сыпь, так и серьезное инфекционное проявление, представляющее угрозу для жизни пациента.

Бактерии появились на Земле примерно 3,5 миллиарда лет назад. Их строение незначительно отличается от современных видов. Все бактерии относятся к прокариотам, это значит, что в их клетке отсутствует оформленное ядро.

Снаружи они окружены клеточной стенкой, которая сохраняет форму микроорганизма. Некоторые виды способны вырабатывать слизь, похожую на капсулу и защищающую микроб от высыхания.

Внутреннее строение бактерий довольно простое. Клетка содержит основные включения:

  • цитоплазму, которая на 75% состоит из воды, а остальные 25% составляют минеральные вещества;
  • гранулы, являющиеся источником энергии для организма;
  • мезосомы, необходимые для деления клетки и спорообразования;
  • нуклеоид, содержащий генетическую информацию и выступающий в роли ядра;
  • рибосомы, участвующие в синтезе белка;
  • плазмиды.

Систематика

Первые попытки классифицировать бактерии по морфологическим признакам были предприняты в 18 веке. Позднее в основу классификации были положены физиологические признаки. В качестве таксономических признаков применялись наиболее стабильные — форма, окраска по Tpainy (см. Грама метод), спорообразование, тип дыхания, биохимические, антигенные и другие свойства, однако до наст, времени не создано классификации, построенной на принципе филогенетического родства бактерий с учетом эволюционных связей.

Широкое распространение получила классификация Берджи (D. Bergey, 1957), в основу которой положены международные правила номенклатуры бактерий. Номенклатура выдержана в биноминальной системе, принятой в зоологических и ботанических классификациях (см. табл. 1). В качестве таксономических признаков взяты различные биологические свойства бактерий.

Таблица 1

КЛАССИФИКАЦИЯ БАКТЕРИЙ (по Берджи)

Класс Schizomycetes

порядок

семейство

род

Патогенные бактерии

Pseudomonadales (неподвижные клетки с полярными жгутиками)

Spirillaceae

Vibrio

Spirillum

Eubacteriales (кокковидные, палочковидные бактерии с
перитрихиальными жгутиками и неподвижные формы)

Micrococcaceae

Micrococcus

Staphylococcus

Neisseriaceae

Neisseria

Lactobacil laceae

Diplococcus

Streptococcus

Peptostreptococcus

Brucellaceae

Pasteurella

Bordetella

Brucella

Haemophilus

Enterobacteriaceae

Escherichia

Klebsiella

Proteus

Salmonella

Shigella

Bacillaceae

Bacillus

Clostridium

Corynebacteriaceae

Corynebacterium

Actinomycetales (нитевидные, ветвящиеся клетки —
актиномицеты)

Mycobacteriaceae

Mycobacterium

Actinomycetaceae

Nocardia

Actinomyces

Streptomycetaceae

Actinoplanaceae

Spirochaetales (подвижные, неригидные бактерии, у которых
цитоплазма спирально закручена вокруг осевой нити)

Spirochaetaceae

Borrelia

Treponema

Leptospira

Mycoplasmatales (мелкие полиморфные, фильтрующиеся формы)

Mycoplasmataceae

Mycoplasma

Acholeplasmataceae

Acholeplasma

Непатогенные бактерии

Chlamydobacteriales

Hyphomicrobiales

Caryophanales

Beggiatoales

Myxobacterales

Приведенные в таблице 1 микоплазмы — мельчайшие образования, отграниченные вместо ригидной клеточной стенки только цитоплазматической мембраной, существенно отличающиеся от бактерий, выделены в настоящее время в отдельный класс — Mollicutes (см. Mycoplasmataceae).

Офи­ци­аль­но при­ня­той клас­си­фи­ка­ции Б. нет. Пер­во­на­чаль­но для этих це­лей ис­поль­зо­ва­лась ис­кусств. клас­си­фи­ка­ция, ос­но­ван­ная на сход­ст­ве их мор­фо­ло­гич. и фи­зио­ло­гич. при­зна­ков. Бо­лее со­вер­шен­ная фи­ло­ге­не­ти­че­ская (ес­те­ст­вен­ная) клас­си­фи­ка­ция объ­еди­ня­ет родств. фор­мы, ис­хо­дя из общ­но­сти их про­ис­хо­ж­де­ния. Та­кой под­ход стал воз­мож­ным по­сле вы­бо­ра в ка­че­ст­ве уни­вер­саль­но­го мар­ке­ра ге­на 16S рРНК и по­яв­ле­ния ме­то­дов оп­ре­де­ле­ния и срав­не­ния нук­лео­тид­ных по­сле­до­ва­тель­но­стей. Ген, ко­ди­рую­щий 16S рРНК (вхо­дит в со­став ма­лой суб­час­ти­цы про­ка­рио­тич. ри­бо­со­мы), при­сут­ст­ву­ет у всех про­ка­ри­от, ха­рак­те­ри­зу­ет­ся вы­со­кой сте­пе­нью кон­сер­ва­тив­но­сти нук­лео­тид­ной по­сле­до­ва­тель­но­сти, функ­цио­наль­ной ста­биль­но­стью.

Наи­бо­лее упот­ре­би­мой яв­ля­ет­ся клас­си­фи­ка­ция, пуб­ли­куе­мая в пе­рио­дич. из­да­нии оп­ре­де­ли­те­ля Бэрд­жи (Бер­ги); см. так­же сайт в Ин­тер­не­те – http://141.150.157.117:8080/prokPUB/index.htm. По од­ной из су­ще­ст­вую­щих сис­тем ор­га­низ­мов, Б. вме­сте с ар­хея­ми со­став­ля­ют цар­ст­во про­ка­ри­от. Мно­гие ис­сле­до­ва­те­ли рас­смат­ри­ва­ют их как до­мен (или над­цар­ст­во), на­ря­ду с до­ме­на­ми (или над­цар­ст­ва­ми) архей и эу­ка­ри­от. В пре­де­лах до­ме­на наи­бо­лее круп­ны­ми так­со­на­ми Б. яв­ля­ют­ся фи­лу­мы: Proteo­bac­teria, вклю­чаю­щий 5 клас­сов и 28 по­ряд­ков; Actinobacteria (5 клас­сов и 14 по­ряд­ков) и Firmicutes (3 клас­са и 9 по­ряд­ков). Кро­ме то­го, вы­де­ля­ют­ся так­со­но­мич. ка­те­го­рии бо­лее низ­ко­го ран­га: се­мей­ст­ва, ро­ды, ви­ды и под­ви­ды.

По совр. пред­став­ле­ни­ям, к од­но­му ви­ду от­но­сят штам­мы Б., у ко­то­рых по­сле­до­ва­тель­но­сти нук­лео­ти­дов в ге­нах, ко­ди­рую­щих 16S рРНК, сов­па­да­ют бо­лее чем на 97%, а уро­вень го­мо­ло­гии нук­лео­тид­ных по­сле­до­ва­тель­но­стей в ге­но­ме пре­вы­ша­ет 70%. Опи­са­но не бо­лее 5000 ви­дов Б., ко­то­рые пред­став­ля­ют лишь не­зна­чи­тель­ную их часть сре­ди на­се­ляю­щих на­шу пла­не­ту.

Бактерии опасные и полезные, их роль в жизни человека

Патогенность и вирулентность. Бактерии обитают в почве, воде, организме человека и животных. Разнообразные группы бактерий могут развиваться в условиях, не доступных для других организмов. Качественный и количественный состав бактерий, обитающих во внешней среде, зависит от многих условий: pH среды, температуры, наличия питательных веществ, влажности, аэрации, присутствия других микроорганизмов (см.

Антагонизм микробов) и др. Чем больше в среде содержится разнообразных органических соединений, тем большее количество бактерий можно в ней обнаружить. В незагрязненных почвах и водах встречается сравнительно небольшое количество сапрофитных форм бактерий. В почве обитают спорообразующие и неспорообразующие бактерии, микобактерии, миксобактерии, кокковые формы.

В воде встречаются разнообразные спорообразующие и неспорообразующие бактерии и специфические водные бактерии — водные вибрионы, нитчатые бактерии и др. В иле на дне водоемов обитают различные анаэробные бактерии. Среди бактерий, обитающих в воде и почве, имеются азотфиксирующие, нитрифицирующие, денитрифицирующие, расщепляющие целлюлозу бактерии. и др.

В морях и океанах обитают бактерии, растущие при высоких концентрациях солей и повышенном давлении, встречаются светящиеся виды. В загрязненных водах и почве, кроме почвенных и водных сапрофитов, в большом количестве встречаются бактерии, обитающие в организме человека и животных,— энтеробактерии, клостридии и др.

Показателем фекального загрязнения обычно является наличие кишечной палочки. В связи с широким распространением бактерий и своеобразием метаболической активности многих их видов они имеют исключительно большое значение в круговороте веществ в природе. В круговороте азота участвуют многие виды бактерий — от видов, расщепляющих белковые продукты растительного и животного происхождения, до видов, образующих нитраты, которые усваиваются высшими растениями.

Метаболическая активность бактерий обусловливает минерализацию органического углерода и образование углекислоты, возврат которой в атмосферу важен для поддержания жизни на Земле. Усвоение углекислоты из атмосферы производится зелеными растениями благодаря их фотосинтетической активности. Большая роль принадлежит бактериям в круговороте серы, фосфора, железа.

image description

Сравнительно небольшая часть всех известных микробов способна вызывать заболевания человека и животных. Потенциальная способность бактерий вызывать инфекционные заболевания, являющаяся их видовым признаком, называется болезнетворностью или патогенностью. У одного и того же вида степень выраженности патогенных свойств может довольно широко варьировать.

Аммонифицирующие микробы (вызывающие гниение) с помощью ряда имеющихся у них ферментов способны разлагать останки погибших животных и растений. При разложении белков выделяются азот и аммиак.

Уробактерии разлагают мочевину, которую человек и все животные планеты выделяют ежесуточно. Ее количество огромно и достигает 50 млн. тонн в год.

Определенный вид бактерий участвует в окислении аммиака. Этот процесс называется нитрофикацией.

Денитрифицирующие микробы возвращают молекулярный кислород из почвы в атмосферу.

Рис. 4. На фото полезные бактерии — аммонифицирующие микробы. Они подвергают останки погибших животных и растений разложению.

Значение бактерий в жизнедеятельности человека, животных, растений, грибов и бактерий огромно. Как известно, для нормального их существования необходим азот. Но усваивать азот в газообразном состоянии бактерии не могут. Оказывается, связывать азот и образовывать аммиак умеют сине-зеленые водоросли (Цианобактерии), свободноживущие азотофиксаторы и особые клубеньковые бактерии. Все эти полезные бактерии производят до 90% связанного азота и вовлекают до 180 млн. т. азота в азотный фонд почвы.

Клубеньковые бактерии прекрасно сожительствуют с бобовыми растениями и облепихой.

Такие растения, как люцерна, горох, люпин и другие бобовые имеют на своих корнях так называемые «квартиры» для клубеньковых бактерий. Эти растения высаживаются на истощенные почвы для обогащения их азотом.

Рис. 5. На фото клубеньковые бактерии на поверхности корневого волоска бобового растения.

Рис. 6. Фото корня бобового растения.

Рис. 7. На фото полезные бактерии — цианобактерии.

Углерод является важнейшим клеточным веществом животного и растительного мира, а так же мира растений. Он составляет 50% сухого остатка вещества клетки.

Много углерода содержится в клетчатке, которой питаются животные. В их желудке клетчатка под действием микробов разлагается и далее, в виде навоза, попадает наружу.

Разлагают клетчатку целлюлозные бактерии. В результате их работы почва обогащается гумусом, что значительно повышает ее плодородие, а углекислота возвращается в атмосферу.

Рис. 8. Зеленым цветом окрашены внутриклеточные симбионты, желтым – масса перерабатываемой древесины.

В белках и липидах содержится большое количество фосфора, минерализация которого осуществляется Вас. megatherium (из рода гнилостных бактерий).

Железобактерии участвуют в процессах минерализации органических соединений, содержащих железо. В результате их деятельности в болотах и озерах образуется большое количество железной руды и железомарганцевых отложений.

Бактерии относятся к

Серобактерии живут в воде и почве. Их много в навозе. Они участвуют в процессе минерализации серосодержащих веществ органического происхождения. В процессе разложения органических серосодержащих веществ выделяется газ сероводород, который крайне ядовит для окружающей среды, в том числе для всего живого. Серобактерии в результате своей жизнедеятельности превращают этот газ в неактивное безвредное соединение.

Рис. 9. Несмотря на кажущуюся безжизненность, в реке Рио Тинто жизнь всё-таки есть. Это различные, окисляющие железо, бактерии и множество других их видов, которые можно встретить только в этом месте.

Рис. 10. Зелёные серобактерии в колонне Виноградского.

Бактерии, принимающие активное участие в минерализации органических соединений, считаются чистильщиками (санитарами) планеты Земля. С их помощью органические вещества погибших растений и животных превращаются в перегной, который почвенные микроорганизмы превращают в минеральные соли, так необходимые для построения корневой, стеблевой и листовой систем растений.

Рис. 11. Минерализация органических веществ, поступающих в водоем, происходит в результате биохимического окисления.

Бактерии относятся к

Клетки растительных организмов связываются друг с другом (цементируются) специальным веществом, которое называется пектин. Некоторые виды маслянокислых бактерий обладают способностью сбраживать это вещество, которое при нагревании превращая в студенистую массу (пектис). Эта особенность используется при замачивании растений, содержащих много волокон (лен, конопля).

Рис. 12. Существует несколько способов получения тресты. Самым распространённым является биологический способ, при котором связь волокнистой части с окружающими тканями разрушается под влиянием микроорганизмов. Процесс брожения пектиновых веществ лубяных растений называется мочкой, а вымоченная солома — трестой.

Бактерии, очищающие воду, стабилизируют уровень ее кислотности. С их помощью сокращаются донные отложения, улучшается здоровье рыб и растений, живущих в воде.

Недавно группой ученых из разных стран были обнаружены бактерии, которые разрушают детергенты, входящие в состав синтетических моющих средств и некоторые лекарственные препараты.

Рис. 13. Широко применяется деятельность ксенобактерий для очистки почв и водоемов, загрязненных нефтепродуктами.

Бактерии относятся к

Рис. 14. Пластиковые купола, очищающие воду. В них содержатся гетеротрофные бактерии, питаюшиеся углеродосодержащими материалами, и автотрофные бактерии, питаюшиеся аммиак- и азотсодержащие материалами. Система трубок поддерживает их жизнеобеспечение.

Маслянокислые микробы находятся повсюду. Насчитывается более 25-и видов этих микробов. Они принимают участие в процессе разложения белков, жиров и углеводов.

Маслянокислое брожение вызывают анаэробные спорообразующие бактерии, относящиеся к роду клостридиум. Они способны сбраживать различные сахара, спирты, органические кислоты, крахмал, клетчатку.

Рис. 16. На фото маслянокислые микроорганизмы (компьютерная визуализация).

Вредные бактерии, названия микроорганизмов изучают со студенческой скамьи медики всех направлений. Здравоохранение ежегодно ищет новые методы для профилактики распространения инфекций, опасных для жизни человека. При соблюдении мер профилактики не придется тратить силы на поиск новых способов борьбы с такими заболеваниями.

Для этого необходимо вовремя выявлять источник появления инфекции, определить круг заболевших и возможных пострадавших. Обязательно необходимо изолировать тех, кто заражен, и провести дезинфекцию очага заражения.

Второй этап – это уничтожение путей, через которые могут передаваться вредные бактерии. Для этого проводят соответствующую пропаганду среди населения.

Под контроль берут объекты питания, водоемы, склады с хранением продовольствия.

Каждый человек может противостоять вредным бактериям, всячески укрепляя свой иммунитет. Здоровый образ жизни, соблюдение элементарных правил гигиены, защита себя при половом контакте, использование стерильных одноразовых медицинских инструментов и оборудования, полное ограничение от общения с людьми, находящимися на карантине.

Морфология

Рис. 1. Основные формы бактерий (схематическое изображение); 1 — 6 — шаровидные формы: 1 — стафилококки; 2 и 3 — диплококки; 4 — стрептококки; 5 — тетракокки; 6— сарцины; 7 — 9— различные виды палочек; 10-12— спиралевидные формы: 10 — вибрионы; 11 и 12 — спириллы.

Рис. 1. Основные формы бактерий (схематическое изображение); 1 — 6 — шаровидные формы: 1 — стафилококки; 2 и 3 — диплококки; 4 — стрептококки; 5 — тетракокки; 6— сарцины; 7 — 9— различные виды палочек; 10-12— спиралевидные формы: 10 — вибрионы; 11 и 12 — спириллы.

Существует три основные формы бактерий — шаровидная, палочковидная и спиралевидная (рис. 1); большая группа нитчатых бактерий объединяет преимущественно водные бактерии и не содержит патогенных видов.

Шаровидные Ббактерии — кокки, подразделяются в зависимости от расположения клеток после деления на несколько групп: 1) диплококки (делятся в одной плоскости и располагаются парами); 2) стрептококки (делятся в одной плоскости, но при делении не отделяются друг от друга и образуют цепочки); 3) тетракокки (делятся в двух взаимно перпендикулярных плоскостях, образуя группы по четыре особи);

Рис. 2. Расположение спор (просветленные участки) у некоторых видов бактерий: 1 — Вас. anthracis; 2 — Cl. sporogenes; 3 — Cl. tetani.

Рис. 2. Расположение спор (просветленные участки) у некоторых видов бактерий: 1 — Вас. anthracis; 2 — Cl. sporogenes; 3 — Cl. tetani.

Рис. 1. Споры Вас. cereus (окраска по Ожешке)

Рис. 1. Споры Вас. cereus (окраска по Ожешке)

Рис. 2. Споры Cl. tetani (окраска по Ожешке)

Рис. 2. Споры Cl. tetani (окраска по Ожешке)

Рис. 3. Палочки звездчатой формы (бактероиды).

Рис. 3. Палочки звездчатой формы (бактероиды).

Палочковидные бактерии имеют строго цилиндрическую или овоидную форму, концы палочек могут быть ровными, закругленными, заостренными. Палочки могут располагаться попарно в виде цепочек, но большинство видов располагается без определенной системы. Длина палочек варьирует от 1 до 8 мкм, средний диаметр 0,5—2 мкм.

Принято собственно бактериями называть палочки, не образующие спор (см. Споры). Бактерии, образующие споры, называются бациллами. По принятой номенклатуре к бациллам относят аэробные формы. Анаэробных спорообразующих бактерий относят к клостридиям. Спорообразование у бацилл и клостридий не связано с процессом размножения.

Споры у них относятся к типу эндоспор, представляющих собой круглые или овальные тела, преломляющие свет и окрашивающиеся по специальным методам (цветн. рис. 1 и 2). Расположение спор в клетке, их величина и форма характерны для каждого вида бактерий (рис. 2). Некоторые палочки (микобактерии, коринебактерии) образуют нитевидные особи, другие (клубеньковые бактерии) образуют разветвленные, звездчатые формы — так называемые бактероиды (рис. 3).

Спиралевидные формы бактерий подразделяют на вибрионы и спириллы. Изогнутость тел вибрионов не превышает одной четверти оборота спирали. Спириллы образуют изгибы из одного или нескольких оборотов (см. Вибрионы, Спириллы).

Какие бывают типы или виды бактерий и как их определить

Некоторые бактерии обладают подвижностью, что отчетливо видно при наблюдении методом висячей капли (см.) или другими методами. Подвижные бактерии активно передвигаются с помощью особых органелл — жгутиков (см. Жгутики бактериальные) либо за счет скользящих движений (миксобактерии).

Рис. 4. Капсулы палочек склеромы.

Рис. 4. Капсулы палочек склеромы.

Рис. 3. Капсулы Klebsiella pneumoniae (окраска по Бурри)

Рис. 3. Капсулы Klebsiella pneumoniae (окраска по Бурри)

Капсула имеется у ряда бактерий и является их внешним структурным компонентом (рис. 4 и цветн. рис. 3). У ряда бактерий аналогично капсуле имеется образование в виде тонкого слизистого слоя на поверхности клетки. У некоторых бактерий капсула формируется в зависимости от условий их существования. Одни бактерии образуют капсулы только в макроорганизме, другие — как в организме, так и вне его, в частности на питательных средах, содержащих повышенные концентрации углеводов.

Некоторые бактерии образуют капсулы независимо от условий существования (см. Капсульные бактерии). В состав капсулы большинства бактерий входят полимеризованные полисахариды, состоящие из пентоз и аминосахаров, уроновые кислоты, полипептиды и белки. Капсула не является аморфным образованием, а определенным образом структурирована. У некоторых бактерий, например, пневмококков, капсула определяет их вирулентность, а также некоторые антигенные свойства бактериальной клетки.

Клеточная стенка бактерий определяет их форму и обеспечивает сохранение внутреннего содержимого клетки. По особенностям химического состава и структуры клеточной стенки бактерии дифференцируют с помощью окрашивания по Граму.

Строение клеточной стенки различно у грамположительных и грамотрицательных бактерий. Основным слоем клеточной стенки, характерным для всех видов бактерий, является ригидный слой (синоним: мукопептидный слой, муреин, пептидогликан; последнее название наиболее соответствует химическому строению слоя), в состав которого вводят повторяющиеся остатки аминосахаров — N-ацетилглюкозамина и N-ацетилмурамовой кислоты, образующих основу линейного полимера — муреина.

Рис. 5. Схематическое изображение пептидогликана: цепочки (косые линии) составлены из N-ацетилглюкозамина (G) и N-аце-тилмурамовой кислоты (М). Вертикально расположенные точки — пептидные субъединицы, горизонтально расположенные точки — перекрещивающиеся пептидные мостики, связывающие цепочки в единую структуру пептидогликана.

Рис. 5. Схематическое изображение пептидогликана: цепочки (косые линии) составлены из N-ацетилглюкозамина (G) и N-аце-тилмурамовой кислоты (М). Вертикально расположенные точки — пептидные субъединицы, горизонтально расположенные точки — перекрещивающиеся пептидные мостики, связывающие цепочки в единую структуру пептидогликана.

С остатком N-ацетилмурамовой кислоты соединен полипептид, состоящий у большинства бактерий из четырех аминокислотных остатков — L-алани-на, D-глутаминовой кислоты, L-лизина или диаминопимелиновой кислоты (ДАП) и D-аланина в молярном отношении 1 : 1 : 1 : 1. В составе пептида в зависимости от вида бактерий могут наблюдаться вариации.

Лизин или ДАП могут быть заменены орнитином, 2,6-диаминобутаровой кислотой и др. Иногда к остатку глутаминовой кислоты присоединена добавочная аминокислота. Пептидные цепи соединены друг с другом с помощью перекрестных полипептидных цепочек, состав которых широко варьирует у разных видов бактерий. Перекрестные связи, например, у стафилококка, образованы пентаглициновыми мостиками, соединяющими D-аланин одной пептидной единицы с лизином другой.

У грамположительных бактериях в дополнение к пептидогликану имеются тейхоевые кислоты (рибит-тейхоевые и глицерин-тейхоевые), также образующие полимер и ковалентно связанные с пептидогликаном. У некоторых бактериях обнаружены тейхуроновые и 2-аминоманнуровая кислоты.

В состав клеточных стенок грамотрицательных бактерий, кроме ригидного слоя, входят липопротеиновый и липополисахаридный слои. Липополисахаридный слой (Л ПС) наиболее изучен у энтеробактерий, и особенно сальмонелл. Л ПС представляет собой комплекс фосфорилирование гетерополисахаридов, ковалентно связанных с содержащим глюкозамин липидом (липид А).

В состав Л ПС входит О-антиген клетки (у энтеробактерий). Полисахаридная часть Л ПС состоит из основной (базисной) структуры и О-антигенной части. В состав базисной части, присущей всем энтеробактериям, входят гептоза, 2-кето-З-дезоксиоктонат (КДО), глюкоза, галактоза и N-ацетил-глюкозамин. Через КДО базисная часть присоединена к компоненту, состоящему из липида А, этанол амина, фосфата и КДО.

С другой стороны (наружной) к базисной структуре присоединены боковые цепи, образованные повторяющимися олигосахаридными единицами. Наружные полисахаридные цепи видоспецифичны и являются соматическими О-антигенами. О-специфичность определяется углеводным составом всей боковой цепи, последовательностью расположения в ней углеводов и концевым сахаром, 6-дезокси- или 3,6-дидезоксигексозой.

Рис. 6. Строение клетки энтеробактерии (схематическое изображение)

Рис. 6. Строение клетки энтеробактерии (схематическое изображение): 1— детерминантные группы О-антигена; 2 — липопротеиновый слой; 3 — жгутик (Н-антиген); 4 — цитоплазматическая мембрана; 5 и б — рибосомы в цитоплазме; 7 — нуклеоид; 8—капсула; 9 — липополисахаридный слой; 10 — ригидный слой клеточной стенки.

Липопротеиновый слой (ЛП) у грамотрицательных бактерий, по представлению Вейделя (Weidel), является наружным слоем клеточной стенки. ЛПС занимает промежуточное положение, наиболее глубоко расположенным является ригидный слой. Эта схема не объясняет обнаружение О-антигена без предварительного разрушения Л П.

Поэтому были предложены другие схемы строения стенки, согласно которым ЛП покрывает бактериальную клетку не сплошным слоем, а через него проходит ЛПС в виде «отростков», как это показано на рис. 6. Это представление подтверждено иммунохимическими методами с использованием ферритина при изучении локализации О-антигена.

У некоторых грамположительных бактериях клеточная стенка, так же как и у грамотрицательных, состоит не только из ригидного слоя, но имеет многослойное строение. Например, у стрептококков в ее состав входит белковый слой, промежуточный липополисахаридный и внутренний ригидный слой. Клеточная стенка не является инертной структурой в ферментативном отношении. В ее составе обнаружены аутолитические ферменты, фосфатаза, аденозинтрифосфатаза.

Цитоплазматическая мембрана бактерий прилегает к внутренней поверхности клеточной стенки, отделяет ее от цитоплазмы и является очень важным в функциональном отношении компонентом клетки. В мембране локализованы окислительно-восстановительные ферменты, с системой мембран связаны такие важнейшие функции клетки, как деление, биосинтез ряда компонентов, хемо- и фотосинтез и др.

Бактерии относятся к

Толщина мембраны у большинства бактерий составляет 7—10 нм. Электронномикроскопическим методом обнаружено, что она состоит из трех слоев: двух электронно-плотных и промежуточного — электронно-прозрачного. В состав мембраны входят белки, фосфолипиды, липопротеины, небольшое количество углеводов и некоторых других соединений.

Многие белки мембраны Б. являются ферментами, участвующими в процессах дыхания, а также в биосинтезе компонентов клеточной стенки и капсулы. В составе мембраны определяются также пермеазы, обеспечивающие перенос в клетку растворимых веществ. Мембрана служит осмотическим барьером, она обладает избирательной полупроницаемостью и ответственна за поступление внутрь клетки питательных веществ и выход из нее продуктов обмена.

Рис. 7. Вас. subtilis: 1 — нуклеоид; 2 и 5 — клеточная стенка; 3 — цитоплазматическая мембрана; 4 — мезосома; 6 — клеточная перегородка (ультратонкий срез, электронограмма; х190 000).

Рис. 7. Вас. subtilis: 1 — нуклеоид; 2 и 5 — клеточная стенка; 3 — цитоплазматическая мембрана; 4 — мезосома; 6 — клеточная перегородка (ультратонкий срез, электронограмма; х190 000).

Действие внешних факторов

Боль­шин­ст­во Б. – од­но­кле­точ­ные ор­га­низ­мы раз­ме­ром 0,2–10,0 мкм. Встречаются среди Б. и «карлики», т. н. нанобак­терии (ок. 0,05 мкм), и «ги­ган­ты», напр. Б. ро­дов Achromatium и Macromonas (дли­на до 100 мкм), оби­та­тель ки­шеч­ни­ка ры­бы-хи­рур­га Epulopiscium fishel­soni (дли­на до 600 мкм) и вы­де­лен­ная из при­бреж­ных мор­ских вод На­ми­бии и Чи­ли Thiomargarita namibiensis (до 800 мкм). Ча­ще бак­те­ри­аль­ная клет­ка име­ет вид па­лоч­ки, сфе­ри­че­скую (кок­ки) или из­ви­тую (виб­рио­ны, спи­рил­лы и спи­ро­хе­ты) фор­му. Об­на­ру­же­ны ви­ды с тре­уголь­ны­ми, квад­рат­ны­ми, звездча­ты­ми и пло­с­ки­ми (та­рел­ко­об­раз­ны­ми) клет­ка­ми. Не­ко­то­рые Б. со­дер­жат ци­то­плаз­ма­тич. вы­рос­ты – про­сте­ки. Б. мо­гут быть оди­ноч­ны­ми, об­ра­зо­вы­вать па­ры, ко­рот­кие и длин­ные це­поч­ки, гроз­ди, фор­ми­ро­вать па­ке­ты по 4, 8 и бо­лее кле­ток (сар­ци­ны), ро­зет­ки, се­ти и ми­це­лий (ак­ти­но­ми­це­ты). Из­вест­ны так­же мно­го­кле­точ­ные фор­мы, об­ра­зую­щие пря­мые и вет­вя­щие­ся три­хо­мы (мик­ро­ко­ло­нии). Встре­ча­ют­ся как под­виж­ные, так и не­под­виж­ные Б. Пер­вые ча­ще все­го пе­ре­ме­ща­ют­ся с по­мо­щью жгу­ти­ков, ино­гда пу­тём сколь­же­ния кле­ток (мик­со­бак­те­рии, циа­но­бак­те­рии, спи­ро­хе­ты и др.). Из­вест­но так­же «пры­гаю­щее» дви­же­ние, при­ро­да ко­то­ро­го не вы­яс­не­на. Для по­движ­ных форм опи­са­ны яв­ле­ния ак­тив­но­го дви­же­ния в от­вет на дей­ст­вия фи­зических или хи­мических фак­то­ров.

Жизнеспособность бактерий при действии внешних факторов изучают разными методами, напр, путем подсчета выживших клеток. Для этого строят кривые выживаемости, выражающие зависимость числа выживших клеток от времени воздействия.

Бактерии относительно устойчивы к низким температурам. Бактерии более чувствительны к действию высоких температур. Обычно при прогревании бактерий при t° 60—70° происходит гибель вегетативных клеток, споры при этом не погибают. Чувствительность бактерий к высоким температурам используется при стерилизации (см.).

Разные виды бактерий относятся по-разному к высушиванию. Одни бактерии (например, гонококки) очень быстро погибают, другие (микобактерии) весьма устойчивы. Однако соблюдая определенные условия (наличие вакуума, специальных сред), можно получить высушенные лиофилизированные культуры бактерий, длительное время сохраняющие жизнеспособность (см. Лиофилизация).

Бактерии можно разрушить путем механического растирания с различными порошками (стеклянный, кварцевый), а также воздействием ультразвука.

Бактерии чувствительны к ультрафиолетовым лучам; наиболее эффективны лучи с длиной волны около 260 нм, что соответствует максимуму поглощения их нуклеиновыми кислотами. Ультрафиолетовые лучи обладают мутагенным действием. Рентгеновские лучи также обладают летальным и мутагенным действием (см. Мутагены).

Чувствительность к химиотерапевтическим препаратам и антибиотикам зависит от вида бактерий и механизма действия препарата на клетку. Из чувствительных бактерий могут быть получены устойчивые формы в результате мутации или при передаче факторов множественной лекарственной устойчивости микроорганизмов (см.).

И в курсе школьной программы, и в рамках специализированного университетского образования обязательно рассматривают примеры из царства бактерий. Эта древнейшая форма жизни на нашей планете появилась раньше, чем любые другие, известные человеку.

Впервые, как оценивают ученые, бактерии сформировались около трех с половиной миллиардов лет тому назад, и около миллиарда лет на планете не существовало иных форм жизни.

Примеры бактерий, наших врагов и друзей, обязательно рассматриваются в рамках любой образовательной программы, ведь именно эти микроскопические формы жизни делают возможными процессы, характерные нашему миру.

Где в живом мире можно встретить примеры бактерий? Да практически везде! Они есть и в родниковой воде, и в пустынных дюнах, и элементах почвы, воздуха и скалистых пород.

В антарктических льдах, к примеру, бактерии живут при морозе -83 градуса, но не мешает им и высокая температура – обнаружены формы жизни в источниках, где жидкость прогрета до 90.

О плотности населения микроскопического мира говорит тот факт, что, к примеру, бактерии в грамме почвы – это неисчислимые сотни миллионов.

Бактерии могут жить на любой другой форме жизни – на растении, животном. Многие знают словосочетание «микрофлора кишечника», а по телевизору постоянно рекламируют продукты, которые ее улучшают.

Обратите внимание

Фактически она, к примеру, бактериями как раз и сформирована, то есть в норме в человеческом организме тоже живет неисчислимо много микроскопических форм жизни. Они есть и на нашей коже, во рту – словом, где угодно.

Некоторые из них действительно вредны и даже опасны для жизни, поэтому так широко распространены антибактериальные средства, а вот без других выжить было бы просто невозможно – наши виды сосуществуют в симбиозе.

Условия обитания

Какой ни приведи пример бактерий, организмы эти исключительно стойкие, могут выжить в неблагоприятных условиях, легко приспосабливаются к отрицательным факторам. Некоторые формы нуждаются в кислороде для обеспечения жизнедеятельности, а другие могут прекрасно обходиться даже без него. Известно много примеров представителей бактерий, превосходно выживающих в бескислородной среде.

Исследования показали, что микроскопические формы жизни могут выжить при сильном морозе, им не страшна очень высока сухость или повышение температуры. Споры, которыми размножаются бактерии, без труда справляются даже с продолжительным кипячением или обработкой низкими температурами.

Какие бывают?

Разбирая примеры бактерий (врагов и друзей человека), нужно помнить, что современная биология вводит систему классификации, несколько упрощающую понимание этого многообразного царства.

Принято говорить о нескольких разных формах, каждая из которых имеет специализированное наименование. Так, кокками называются бактерии в форме шара, стрептококками – шары, собранные в цепочку, а если образование похоже на гроздь, тогда его относят к группе стафилококков.

Бациллы имеют форму палочек, спириллы – спирали, а вибрионы – это такой пример бактерии (привести его должен уметь любой школьник, ответственно проходящий программу), который похож по форме на запятую.

Нередко бактерии собираются в многочисленные группы, формируют пленки, сложные цепочки с обилием изгибов. Известны примеры бактерий, паразитов, от природы оснащенных жгутиками – одним или несколькими. Выделяют подвижные, статичные формы. Двигаться микроскопические организмы могут, сокращаясь, при этом напоминая волну либо используя жгуты.

Такое наименование было принято относительно микроскопических форм жизни, которые при проведении анализа по Граму не меняют окраску под воздействием кристаллического фиолетового. К примеру, бактерии болезнетворные и безопасные из класса грамположительных сохраняют фиолетовый оттенок даже если промыть их спиртом, а вот грамотрицательные полностью обесцвечены.

При исследовании микроскопической формы жизни после промывания по Граму необходимо использовать контрактное окрашивающее вещество (сафранин), под влиянием которого бактерия станет розовой либо красной. Такая реакция обусловлена строением внешней мембраны, не дающей красителю проникнуть внутрь.

Зачем это нужно?

Бактерии относятся к

Если в рамках школьного курса ученику дают задание привести примеры бактерий, обычно он может вспомнить те формы, которые рассмотрены в учебнике, и для них уже указаны их ключевые особенности. Тест с окрашиванием был изобретен как раз для выявления этих специфических параметров. Первоначально исследование преследовало целью классификацию представителей микроскопической формы жизни.

Результаты теста по Граму позволяют делать выводы относительно строения стенок клеток. На основании полученной информации можно разделять все выявленные формы на две группы, что далее учитывается в работе.

К примеру, болезнетворные бактерии из класса грамотрицательных значительно более стойкие к влиянию антител, так как клеточная стенка непроницаемая, защищенная, мощная.

А вот для грамположительных стойкость характерна заметно более низкая.

Классический пример заболевания, вызываемого бактериями – это воспалительный процесс, который может развиться в самых разных тканях и органах. Чаще всего такую реакцию провоцируют грамотрицательные формы жизни, поскольку их клеточные стенки вызывают реакцию со стороны иммунной системы человека.

В стенках содержится ЛПС (липополисахаридный слой), в ответ на который организм генерирует цитокины. Это провоцирует воспаление, организм хозяина вынужден справляться с повышенным производством отравляющих компонентов, что обусловлено борьбой между микроскопической формой жизни и иммунной системой.

Какие известны?

Пример паразитов-бактерий из числа грамотрицательных – это протеобактерии. Группа довольно многочисленная. Именно к ней относятся Salmonella, Pseudomonas, Helicobacter. Не менее важные для науки и медицины представители грамотрицательных микроскопических форм жизни – спирохеты, серобактерии, цианобактерии.

В медицине в настоящее время особенное внимание уделяется трем формам, провоцирующим серьезные заболевания. Половым путем передается бактерия Neisseria gonorrhoeae, симптоматика респираторных патологий наблюдается при заражении организма Moraxella catarrhalis, а одно из очень опасных для человека заболеваний – менингит – провоцируется бактерией Neisseria meningitidis.

Рассматривая, к примеру, бактерии, заболевания, которые они провоцируют, просто нельзя обойти вниманием бациллы.

Слово это в настоящее время известно любому обывателю, даже очень слабо представляющему себе особенности микроскопических форм жизни, а ведь именно эта разновидность грамотрицательных бактерий исключительно важна для современных докторов и исследователей, так как провоцирует серьезные проблемы дыхательной системы человека.

Важно

Известны также примеры заболеваний мочеиспускательной системы, спровоцированные таким заражением. Некоторые бациллы негативно влияют на работу ЖКТ. Степень поражения зависит как от иммунитета человека, так и от конкретной формы, заразившей организм.

  • Как уже говорилось, бактерии могут быть сферическими. Их представляют кокки. Микро – это клетки, которые расположены отдельно; дипло – парами, стафило — гроздьями, стрепто – цепочкой; а также сарцина (пакеты от 8 клеток). Их размер – до 1 мкм.
  • Палочковидным бактериям характерна прямая форма, они имеют до 8 мкм в длину и до 2 мкм – в толщину. Форма может быть неправильной, вплоть до ветвящейся, какую имеют, к примеру, актиномицет. Если палочка немного изогнутой формы – ее называют вибрионом.
  • Также можно назвать риккетсию, хламидию, которая вне пределов клетки является сферической, микоплазмы, у которых отсутствует клеточная стенка и т.д.
  • Бактерии извитых форм напоминают спираль, как, например, спирилла, похожая на штопор. А вот хеликобактер похож своими изгибами на крылья чайки в полете. Также близка к этому виду бактерий спирохета, имеющая спиралевидную форму и обладающая подвижностью. Лептоспира же – с частыми завитками, которые напоминают закрученную веревку.

Физиология

По химическому составу бактерии не отличаются от других организмов.

Рис. 7. Колонии пигментных микрококков

Рис. 7. Колонии пигментных микрококков

Рис. 8. Диффузия пигмента (болотного цвета) Pseudomonas aeruginosa в питательную среду

Рис. 8. Диффузия пигмента (болотного цвета) Pseudomonas aeruginosa в питательную среду

Рис. 9. Пигментные колонии Azotobacter chroococcum

Рис. 9. Пигментные колонии Azotobacter chroococcum

В состав бактерий входят углерод, азот, водород, кислород, фосфор, сера, кальций, калий, магний, натрий, хлор и железо. Их содержание зависит от вида бактерии и условий культивирования. Обязательным химическим компонентом клеток бактерий, как и других организмов, является вода, представляющая собой универсальную дисперсионную среду живой материи.

Основная часть воды находится в свободном состоянии; ее содержание различно у разных бактерий и составляет 70—85% влажного веса бактерий. Кроме свободной, имеется ионная фракция воды и вода, связанная с коллоидными веществами. По составу органических компонентов клетки бактерий сходны с клетками других организмов, отличаясь, однако, наличием некоторых соединений.

В состав бактерий входят белки, нуклеиновые кислоты, жиры, моно-, ди- и полисахариды, аминосахара и др. У бактерий имеются необычные аминокислоты: диаминопимелиновая (содержащаяся еще у сине-зеленых водорослей и риккетсий); N-метиллизин, входящий в состав флагеллина некоторых бактерий; D-изомеры некоторых аминокислот.

Содержание нуклеиновых кислот зависит от условий культивирования, фаз роста, физиологического и функционального состояния клеток. Содержание ДНК в клетке более постоянно, нежели РНК. Нуклеотидный состав ДНК неизменен в процессе развития бактерий, видоспецифичен и используется как один из важнейших таксономических признаков.

Бактерии относятся к

Бактериальные липиды разнообразны. Среди них встречаются жирные кислоты, фосфолипиды, воски, стероиды. Некоторые бактерии образуют пигменты (цветн. рис. 7—9) с интенсивностью, которая широко варьирует у одного и того же вида и зависит от условий выращивания. Твердые питательные среды более благоприятны для образования пигментов.

По химическому строению различают каратиноидные, хиноновые, меланиновые и другие пигменты, которые могут быть красного, оранжевого, желтого, коричневого, черного, синего или зеленого цвета. Чаще пигменты нерастворимы в питательных средах и окрашивают только клетки. Пигменты, растворимые в воде (пиоцианин), диффундируют в среду, окрашивая ее. К пигментам бактерий относится также бактериохлорофилл, придающий фиолетовую или зеленую окраску некоторым фотосинтезирующим бактериям.

Ферменты бактерий делятся на функционирующие только внутри клетки (эндоферменты) и только вне клетки (экзоферменты). Эндоферменты в основном катализируют синтетические процессы, дыхание и т. п. Экзоферменты катализируют главным образом гидролиз высокомолекулярных субстратов до соединения с более низким молекулярным весом, способных проникать внутрь клетки.

В клетке ферменты связаны с соответствующими структурами и органеллами. Например, аутолитические ферменты связаны с клеточной стенкой, окислительно-восстановительные ферменты — с цитоплазматической мембраной, ферменты, связанные с репликацией ДНК,— с мембраной или нуклеоидом.

Активность ферментов зависит от ряда условий, в первую очередь от температуры выращивания бактерий и pH среды. Понижение температуры обратимо снижает, а повышение до определенных пределов (40—42°) повышает активность ферментов. У термофильных и психрофильных бактерий оптимум активности ферментов совпадает с оптимальной температурой роста.

Оптимальная температура для мезофильных бактерий, к которым принадлежат патогенные бактерии, примерно равна 37°. Оптимум pH в основном лежит в пределах 4—7. Встречаются вариации оптимума pH. Ферменты бактерий, активность которых не зависит от присутствия субстрата в среде культивирования, называют конститутивными.

Контроль синтеза ферментов осуществляется путем ингибирования конечным продуктом или путем индукции и репрессии.

Ферментативная активность бактерий используется для их идентификации, чаще всего при этом изучаются сахаролитические и протеолитические свойства. Некоторые ферменты, образуемые патогенными бактериями, являются факторами вирулентности (см.).

Питание. Бактерии используют питательные вещества только в виде относительно небольших молекул, проникающих внутрь клетки. Такой способ питания, характерный для всех организмов растительного происхождения, называют голофитным. Сложные органические вещества (белок, полисахариды, клетчатка и др.) могут служить источником питания и энергии только после их предварительного гидролиза до более простых соединений, растворимых в воде либо в липоидах.

Вещества, которые служат источником питания бактерий, поразительно разнообразны. Важнейшим элементом, необходимым для живых организмов, является углерод. Одни виды бактерий (аутотрофы) могут использовать неорганический углерод из углекислоты и ее солей (см. Аутотрофные организмы), другие (гетеротрофы) — только из органических соединений (см.

Гетеротрофные организмы). Подавляющее большинство бактерий относится к гетеротрофам. Для усвоения углерода требуется посторонний источник энергии. Немногочисленные виды бактерий, обладающие фотосинтетическими пигментами, используют энергию солнечного света. Эти бактерии называются фотосинтезирующими.

Среди них имеются аутотрофы (зеленые и пурпурные серобактерии) и гетеротрофы (несерные пурпурные бактерии). Их называют также соответственно фотолитотрофами и фотоорганотрофами. Большинство же бактерий использует энергию химических реакций и называется хемосинтезирующими. Хемосинтезирующие аутотрофы называются хемолитотрофами, а гетеротрофы — хемоорганотрофами.

Гетеротрофные бактерии усваивают углерод из органических соединений различной химической природы. Легко усваиваются вещества, содержащие ненасыщенные связи или атомы углерода с частично окисленными валентностями. В связи с этим наиболее доступными источниками углерода являются сахара, многоатомные спирты и др. Некоторые гетеротрофы наряду с усвоением органического углерода могут усваивать и неорганический углерод.

Отношение к источникам азота также различно. Существуют бактерии, усваивающие минеральный и даже атмосферный азот. Другие бактерии неспособны синтезировать белковую молекулу или некоторые аминокислоты из простейших соединений азота. В этой группе имеются формы, использующие азот из отдельных аминокислот, из пептонов, сложных белковых веществ и из минеральных источников азота с добавлением несинтезируемых ими аминокислот. К этой группе принадлежат многие патогенные бактерии.

Кроме источников азота и углерода, бактерии нуждаются в фосфоре, сере, калии, магнии, железе, микроэлементах, а также в дополнительных факторах роста (см. Бактериальные факторы роста).

Дыхание. Часть веществ, проникающих внутрь бактериальной клетки, окисляясь, снабжает ее необходимой энергией. Этот процесс называют биол, окислением или дыханием.

Бактерии относятся к

Биологическое окисление сводится в основном к двум процессам: дегидрированию субстрата с последующим переносом электронов к конечному акцептору и накоплению в биологически доступной форме высвобождающейся энергии. Конечным акцептором электронов могут служить кислород, некоторые органические и неорганические соединения.

При аэробном дыхании конечным акцептором электронов является кислород. Энергетические процессы, в которых конечным акцептором электронов является не кислород, а другие соединения, называются анаэробным дыханием, причем к собственно анаэробному дыханию некоторые исследователи относят те процессы, когда конечным акцептором электронов являются неорганические соединения (нитраты и сульфаты).

Под брожением понимают такие энергетические процессы, в которых органические соединения выступают одновременно как доноры и как акцепторы электронов.

Среди бактерий имеются строгие аэробы (см.), развивающиеся только в присутствии кислорода, облигатные анаэробы, развивающиеся только в отсутствие кислорода, и факультативные анаэробы (см.), способные к развитию и в аэробных и в анаэробных условиях. Большинство бактерий обладает пространственно организованной системой дыхательных ферментов, получившей название дыхательной цепи или цепи переноса электронов.

Дыхание у бактерий, подобно дыханию других организмов, сопряжено с процессами окислительного фосфорилирования, сопровождается образованием соединений, богатых макроэргическими связями (АТФ). Энергия, накапливающаяся в этих соединениях, используется по мере необходимости.

В качестве источника энергии бактерии могут использовать разнообразные органические соединения (углеводы, азотсодержащие вещества, жиры и жирные кислоты, органические кислоты и др.). Способность получать энергию в результате окисления неорганических соединений присуща лишь небольшой группе бактерий.

Фотосинтезирующие бактерии превращают энергию видимого света непосредственно в АТФ; этот процесс, осуществляемый в ходе фотосинтеза, называют фотофосфорилированием.

Размножение

Боль­шин­ст­во Б. раз­мно­жа­ют­ся пу­тём де­ле­ния на­двое, ре­же поч­ко­ва­ни­ем, а не­ко­то­рые (напр., ак­ти­но­ми­це­ты) – с по­мо­щью эк­зос­пор или об­рыв­ков ми­це­лия. Из­вес­тен спо­соб мно­же­ст­вен­но­го де­ле­ния (с об­ра­зо­ва­ни­ем мел­ких ре­про­дук­тив­ных кле­ток-бае­о­ци­тов у ря­да циа­но­бак­те­рий). Мно­го­кле­точ­ные про­ка­рио­ты мо­гут раз­мно­жать­ся от­де­ле­ни­ем от три­хом од­ной или не­сколь­ких кле­ток. Не­ко­то­рые Б. ха­рак­те­ри­зу­ют­ся слож­ным цик­лом раз­ви­тия, в про­цес­се ко­то­ро­го могут ме­нять­ся мор­фо­ло­гия кле­ток и об­ра­зо­вы­вать­ся по­коя­щие­ся фор­мы: цис­ты, эн­дос­по­ры, аки­не­ты. Мик­со­бак­те­рии спо­соб­ны об­ра­зо­вы­вать пло­до­вые те­ла, час­то при­чуд­ли­вых кон­фи­гу­ра­ций и ок­ра­сок.

От­ли­чит. осо­бен­но­стью Б. яв­ля­ет­ся спо­соб­ность к бы­ст­ро­му раз­мно­же­нию. Напр., вре­мя уд­вое­ния кле­ток ки­шеч­ной па­лоч­ки (Escherichia coli) со­став­ля­ет 20 мин. Под­счи­та­но, что по­том­ст­во од­ной клет­ки в слу­чае не­ог­ра­ни­чен­но­го рос­та уже че­рез 48 ч пре­вы­си­ло бы мас­су Зем­ли в 150 раз.

Бактерии относятся к
Бактерии относятся к

Колонии бактерий на твёрдой

агаризованной

среде в

чашке Петри

Некоторые бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием. Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток).

При делении большинство грамположительных бактерий и нитчатых цианобактерий синтезируют поперечную перегородку от периферии к центру при участии мезосом. Грамотрицательные бактерии делятся путём перетяжки: на месте деления обнаруживается постепенно увеличивающееся искривление ЦПМ и клеточной стенки внутрь.

У других бактерий кроме размножения наблюдается половой процесс, но в самой примитивной форме. Половой процесс бактерий отличается от полового процесса эукариот тем, что у бактерий не образуются гаметы и не происходит слияния клеток. Однако главнейшее событие полового процесса, а именно обмен генетическим материалом, происходит и в этом случае.

Этот называется генетической рекомбинацией. Часть ДНК (очень редко вся ДНК) клетки-донора переносится в клетку-реципиент, ДНК которой генетически отличается от ДНК донора. При этом перенесённая ДНК замещает часть ДНК реципиента. В процессе замещения ДНК участвуют ферменты, расщепляющие и вновь соединяющие цепи ДНК.

При этом образуется ДНК, которая содержит гены обеих родительских клеток. Такую ДНК называют рекомбинантной. У потомства или рекомбинантов, наблюдается заметное разнообразие признаков, вызванное смещением генов. Такое разнообразие признаков очень важно для эволюции и является главным преимуществом полового процесса.

Известны 3 способа получения рекомбинантов. Это — в порядке их открытия — трансформация, конъюгация и трансдукция.

Формы бактерий

Гены, необходимые для жизнедеятельности и определяющие видовую специфичность, расположены у бактерий чаще всего в единственной ковалентно замкнутой молекуле ДНК — хромосоме (иногда для обозначения бактериальных хромосом, чтобы подчеркнуть их отличия от эукариотических, используют термин генофор (англ. genophore)).

Отдельная клетка может содержать лишь 80 % от суммы генов, имеющихся во всех штаммах её вида (т. н. «коллективный геном»).

Помимо хромосомы, в клетках бактерий часто находятся плазмиды — также замкнутые в кольцо ДНК, способные к независимой репликации. Они могут быть настолько велики, что становятся неотличимы от хромосомы, но содержат дополнительные гены, необходимые лишь в специфических условиях. Специальные механизмы распределения обеспечивают сохранение плазмиды в дочерних клетках так что они теряются с частотой менее 10−7 в пересчёте на клеточный цикл.

Специфичность плазмид может быть весьма разнообразной: от присутствия лишь у одного вида-хозяина до плазмиды RP4, встречающейся почти у всех грамотрицательных бактерий. В плазмидах кодируются механизмы устойчивости к антибиотикам, разрушения специфических веществ и т. д., nif-гены, необходимые для азотфиксации также находятся в плазмидах. Ген плазмиды может включаться в хромосому с частотой около 10−4 — 10−7.

В ДНК бактерий, как и в ДНК других организмов, выделяются транспозоны — мобильные сегменты, способные перемещаться из одной части хромосомы к другой, или во внехромосомные ДНК. В отличие от плазмид, они неспособны к автономной репликации, и содержат IS-сегменты — участки, которые кодируют свой перенос внутри клетки. IS-сегмент может выступать в роли отдельной транспозоны.

У прокариот может происходить частичное объединение геномов. При конъюгации клетка-донор в ходе непосредственного контакта передаёт клетке-реципиенту часть своего генома (в некоторых случаях весь). Участки ДНК донора могут обмениваться на гомологичные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Аналогично бактериальная клетка может поглощать и свободно находящуюся в среде ДНК, включая её в свой геном в случае высокой степени гомологии с собственной ДНК. Данный процесс носит название трансформация. В природных условиях протекает обмен генетической информацией при помощи умеренных фагов (трансдукция).

При горизонтальном переносе новых генов не образуется (как то имеет место при мутациях), однако осуществляется создание разных генных сочетаний. Это важно по той причине, что естественный отбор действует на всю совокупность признаков организма.

Патогенные бактерии

❖ Тип размножения бактерий — бесполый. Бактериальная клетка начинает размножаться, попав в благоприятные условия и достигнув определенного размера.

❖ Формы (способы) размножения бактерий:■ делением клетки надвое,■ почкованием (встречается как исключение),■ спорообразованием.

Размножение делением клетки надвое: сначала путем репликации ДНК удваивается генетический материал клетки. После этого белки, прикрепляющие молекулы ДНК к выростам цитоплазматической мембраны, разделяют (растаскивают) дочерние молекулы ДНК и происходит оформление обособленных бактериальных хромосом (нуклеоидов).

Спорообразование свойственно некоторым бактериям при наступлении неблагоприятных условий. При этом в бактериальной клетке значительно уменьшается количество свободной воды, снижается ферментативная активность, цитоплазма сжимается, а клетка покрывается очень плотной оболочкой. Споры бактерий устойчивы к различным воздействиям (выдерживают длительное высыхание, нагревание свыше 100 °С и охлаждение примерно до -200 °С) и сохраняют жизнеспособность в течение длительного времени. При попадании в благоприятные условия споры набухают и прорастают, образуя новую вегетативную клетку бактерий.

♦ Виды спор бактерий:■ микроцисты (образуются из целой клетки),■ эндогенные (образуются внутри клетки).

Циста — временная форма существования многих одноклеточных и ряда простейших многоклеточных организмов, характеризующаяся наличием защитной оболочки. Позволяет перенести неблагоприятные условия или предохраняет клетку в период ее деления.

❖ Формы полового процесса у бактерий:■ трансформация,■ конъюгация,■ трансдукция.

Трансформация осуществляется при попадании фрагментов ДНК разрушенных клеток одной культуры бактерий в живую культуру другой бактерии. Эти фрагменты ДНК могут поглощаться клеткой-реципиентом и встраиваться в ее нуклеоид.

При конъюгации перенос участка ДНК от донора (выполняющего мужские функции) к клетке-реципиенту осуществляется при непосредственном контакте через половую фимбрию (тонкую белковую трубочку), которая формируется у клетки-донора. После этого клетки разъединяются. При конъюгации очень часто наблюдается передача не всей молекулы ДНК, а только ее фрагментов.

При трансдукции небольшой фрагмент ДНК переносится от одной клетки к другой бактериофагами.

Бактериальная клетка начинает делиться после завершения последовательных реакций, связанных с воспроизведением ее компонентов.

Наиболее важным процессом роста клетки является воспроизведение ее наследственного аппарата. Разделению нуклеоида предшествуют процессы репликации ДНК (см. Репликация). Репликация начинается, когда отношение ДНК/белок клетки достигнет определенного уровня. Для инициации репликации требуется синтез специфических белковых продуктов.

На реплицирующейся ДНК клетки при изучении ауторадиографическим методом различают две точки: точку начала репликации и точку роста (рис. 10). Репликативная точка продвигается по всей ДНК клетки, имеющей, как отмечалось, циркулярно замкнутую структуру. Время прохождения точки репликации от начала до конца всей циркулярной структуры ДНК, или время синтеза ДНК, постоянно и не зависит от скорости роста клеток.

У быстро растущих культур, когда время генерации (время, протекающее между делением клеток) меньше, чем время, необходимое для репликации ДНК (40—47 минут у E. coli B/r), новая инициация начинается до окончания предыдущей. Таким образом, у быстро растущих культур имеется несколько репликационных точек (вилок).

  • Как и любое явление, деление бактерии подчиняется законам термодинамики, по которым время размножения связано с количеством выделяемой наружу теплоты и составляет около шестой части выделяемой теплоты.
  • Проще говоря, создание для бактерии идеальных условий может заставить бактерию делиться практически каждые полчаса. Если бы это было возможно, в течение суток дочерние клетки одной бактерии достигли бы массы в почти 2 тыс. тонн, а за 5 дней заселили бы все водное пространство планеты.
  • Известно, что в качестве опыта использовалась морская псевдомонада, помещенная в оптимальные условия: ее популяция удваивалась практически через 10 минут.

Микобактерий туберкулеза

Палочка Коха является самой опасной бактерией в мире на сегодняшний день. Среда обитания бактерии – позвоночник любого млекопитающего. При ослаблении иммунной системы очень быстро поражает легкие, печень, почки, кости, лимфоузлы. Микобактерия отличается высокой живучестью и может существовать в водной среде и почве до 6 месяцев, на оболочках продуктов питания – до года, в человеческом организме – всю жизнь.

Четвертая часть мирового населения заражена латентным (скрытым) туберкулезом и, возможно, даже не подозревает об этом. Но серьезное поражение иммунитета может дать толчок развитию болезни. Только в России ежегодная смертность от заболевания составляет порядка 20 тыс. человек. Основной причиной является легкость заражения – воздушно-капельный путь. Вовремя выявить и предупредить туберкулез поможет ежегодная процедура флюорографии.

Генетика бактерий

Генетика бактерий — раздел общей генетики, изучающий наследственность и изменчивость у бактерий. Относительная простота организации бактерий, их способность расти в синтетических средах, быстрое размножение позволяют анализировать относительно редко возникающие изменения генома (см.) бактерий, составляющих многомиллиардные популяции, и проследить за их наследованием.

Для этого используются специальные методы, обеспечивающие отбор из огромной популяции отдельных генетически измененных бактериальных клеток, передачу хромосомы или ее фрагментов от одних клеток (доноров) другим (реципиентам) с последующим генетическим анализом возникших рекомбинантов (см. Рекомбинация).

Развитие генетики бактерий связано с изучением бактериальной трансформации (см.), которое дало возможность установить роль ДНК как материальной основы наследственности. При изучении генетической трансформации у бактерий были разработаны методы экстракции и очистки ДНК, биохимические и биофизические методы анализа ее свойств.

Это позволило не только изучать генетические изменения на клеточном уровне, но и сопоставлять эти изменения с изменением структуры ДНК. Таким образом, в совокупности с генетическими методами методы биохимического исследования генетического материала обеспечили возможность анализа закономерностей бактериальной генетики на молекулярном уровне.

Среди бактерий наиболее изученными в генетическом отношении являются кишечные палочки, у которых были открыты способы передачи генетического материала (хромосомы или ее фрагментов) от донора реципиенту, осуществляемые либо путем прямого скрещивания (см. Конъюгация у бактерий), либо с помощью бактериальных вирусов (см. Трансдукция).

Закономерности генетического обмена, установленные на кишечных палочках и сальмонеллах, присущи и ряду других микроорганизмов, играющих важную роль в инфекционной патологии. Феномены конъюгации и трансдукции обнаружены также у шигелл и некоторых других патогенных микроорганизмов, что позволяет осуществить генетический анализ факторов, обусловливающих их патогенность.

Для выяснения молекулярных механизмов, различных генетических феноменов значительный интерес представляют микроорганизмы, способные к генетической трансформации, при которой бактерии-реципиенты поглощают очищенную ДНК, экстрагированную из бактерий-доноров. В опытах трансформации выявляется генетическая активность изолированной, внеклеточной ДНК, что позволяет анализировать функциональную активность ДНК, подвергнутой различным воздействиям, изменяющим ее структуру как in vivo, так и in vitro.

Поэтому в молекулярно-генетических исследованиях широко используются трансформируемые виды бактерий, такие как Вас. subtilis, H. influenzae, Pneumococcus и др.

Свойства бактерий, как и любых других организмов, определяются набором присущих им генов. Запись генетической информации, закодированной в бактериальных генах, осуществлена на основе универсального триплетного кода (см. Генетический код). Яновским (С. Janofsky) были получены доказательства колинеарности (соответствия) между последовательностью нуклеотидов и последовательностью аминокислот в полипептиде и установлен in vivo состав отдельных триплетов, кодирующих включение различных аминокислот.

Набор генов, присущих бактериям, определяет их генотип (см.).Бактерии, обладающие одним и тем же генотипом, не всегда идентичны по своим свойствам; их свойства могут варьировать в зависимости от среды культивирования, возраста бактериальных культур, температуры выращивания и ряда других факторов внешней среды.

Генотип определяет только потенциально присущие бактериальным клеткам свойства, выражение которых зависит от функционирования (активности) конкретных генетических структур. Хромосома бактерий включает 2 типа функционально различных генетических структур: структурные гены, детерминирующие специфичность белков, которые данная клетка способна синтезировать, и регуляторные гены, регулирующие активность структурных генов в зависимости от окружающих условий, в частности от наличия или отсутствия субстрата синтезируемого фермента либо от концентрации необходимого клетке соединения, от состояния генетического материала (репликация ДНК) и пр.

В активном состоянии структурные гены транскрибируются (см. Транскрипция), то есть становятся доступными для считывания генетической информации с помощью ДНК-зависимой РНК-полимеразы. Формирующаяся в процессе транскрипции информационная РНК (и-РНК) транслируется в соответствующий полипептид, структура которого закодирована в данных структурных генах.

По типу регуляции синтетические системы бактерий делят на 2 вида: катаболические и анаболические. Первые осуществляют утилизацию необходимой клетке энергии, вторые обеспечивают биосинтез соединений, необходимых бактериям.

Грамположительные и грамотрицательные бактерии

Катаболическая система E. coli, осуществляющая расщепление лактозы на глюкозу и галактозу, детально изучена Жакобом и Моно (F. Jacob, J. Monod).

Ферменты этой системы (β-галактозидаза, галактозидпермеаза и галактозидтрансацетилаза) детерминируются соответствующими структурными генами. Рядом со структурными генами расположен регуляторный участок, так называемый оператор, «включающий» и «выключающий» считывание информации (транскрипцию) со структурных генов.

Другой регуляторной единицей данной системы является ген, контролирующий синтез репрессора — белка, способного соединяться с оператором. В присутствии репрессора структурные гены не транскрибируются РНК-полимеразой и синтеза соответствующих ферментов не происходит. Между оператором и геном-регулятором находится короткий участок ДНК — промотор — место посадки РНК-полимеразы.

Добавленная к среде культивирования бактерий лактоза связывает репрессор, оператор оказывается свободным, и структурные гены начинают транскрибироваться, в результате чего происходит синтез ферментов. Таким образом, лактоза, являющаяся субстратом действия ферментов, выполняет функцию индуктора их синтеза.

Подобного рода регуляция свойственна и другим катаболическим системам. Синтез ферментов, индуцируемый субстратами их действия, называют индуцибельным.

Иного рода регуляция присуща анаболическим бактериальным системам. У этих систем ген-регулятор контролирует синтез неактивного репрессора-апорепрессора. При малых количествах конечного метаболита, контролируемого структурными генами данного биохимического пути (например, какой-нибудь аминокислоты), апорепрессор не соединяется с геном-оператором и не препятствует, следовательно, работе структурных генов и синтезу данной аминокислоты.

В случае же избыточного образования конечного продукта последний начинает функционировать как корепрессор. Связываясь с апорепрессором, корепрессор превращает его в активный репрессор, соединяющийся с геном-оператором. В результате транскрибирование структурных генов и синтез соответствующих соединений прекращаются, то есть наблюдается репрессия системы.

Таким образом, генетическим системам обоего рода — катаболическим (индуцибельным) и анаболическим (репрессибельным) — свойственна регуляция по типу обратной связи: накопление и расход конечного продукта регулирует его синтез анаболическими системами; в катаболических системах в роли регулятора выступает субстрат действия синтезируемых ферментов.

Сдвиги в ходе клеточных синтетических процессов, вследствие которых могут возникать ненаследуемые изменения свойств бактерий одного и того же генотипа, могут быть выражены в различной степени в зависимости от окружающих условий. Резко нарушенные условия существования могут приводить к выключению функции отдельных структурных генов или их гиперфункции, что в свою очередь может привести к значительным морфологическим изменениям, несбалансированному росту и, в конечном счете, к гибели клеток.

Как структурные, так и регуляторные гены бактерии локализуются в бактериальной хромосоме и в сумме образуют генетический аппарат бактерий. Помимо этого, бактерии могут нести внехромосомные генетические детерминанты — плазмиды (см.), которые, как правило, не являются жизненно необходимыми для клетки.

Напротив, активация функций некоторых из них (например, бактериоцинов) губительна для бактериальных клеток, не несущих плазмид. Вместе с тем плазмидные элементы придают бактериям ряд свойств, представляющх большой интерес, с точки зрения инфекционной патологии. Так плазмидными детерминантами может быть обусловлена множественная устойчивость к лекарственным веществам (см. R-фактор), выработка альфа-гемолизина и других бактериальных токсинов.

Хромосома бактерий, как и клеток высших организмов, локализована в ядре.

В отличие от клеток высших организмов, бактериальное ядро лишено оболочки и именуется нуклеоидом. Количество нуклеоидов в бактериальных клетках варьирует в зависимости от фазы роста культуры: число нуклеоидов у кишечных палочек максимально в быстро размножающихся культурах, находящихся в логарифмической фазе роста.

Рис. 13. Схема последовательности передачи генетического материала при конъюгации E. coli, иллюстрирующая кольцевую структуру бактериальной хромосомы

Рис. 13. Схема последовательности передачи генетического материала при конъюгации E. coli, иллюстрирующая кольцевую структуру бактериальной хромосомы. Буквами обозначены различные гены. Правая стрелка — последовательность передачи генов (В,Г ,Д,Е,А,Б) реципиенту донорным штаммом 1; левая стрелка — последовательность передачи генов (Д,Г, В,Б,А,Е) реципиенту донорным штаммом 2.

Антигены бактерий

Антигены бактерий локализованы в жгутиках, капсуле, клеточной стенке, мембранах и других структурах клетки. Антигены бактерий— биологически активные компоненты клетки, определяющие ее иммуногенные, токсические и инвазивные свойства. Расшифровка химической структуры бактериальных антигенов, контроля их синтеза клеткой и локализации в ней, а также иммуногенной специфичности является теоретической основой для создания эффективных методов диагностики и специфической иммунопрофилактики бактериальных инфекций.

Распределение антигенов в бактериальной клетке изучают иммуноцитологическими методами — специфической капсульной реакцией по Томчику (J. Tomcsik), прямым и непрямым методом флюоресцирующих антител, способом антител, меченных ферритином, йодом, ртутью или ураном, с применением электронной микроскопии ультратонких срезов, а также с помощью выделения отдельных структур для их последующего иммунологического изучения.

Для выделения антигенов из бактерий применяют механическое разрушение при помощи мелких стеклянных шариков, ультразвук, высокое давление, детергенты, лизоцим или бактериофаг. Растворимые антигенные комплексы извлекают из бактерий путем их обработки протеолитическими ферментами, горячей водой, трихлоруксусной кислотой, диэтил гликолем, фенолом, мочевиной, пиридином, этиловым эфиром и др.

Анализы на бактерииpg

Среди антигенов бактерий различают типо-, видо-, группо- и родоспецифические, а также «неспецифические». Большинство типо- и группоспецифических антигенов локализовано в жгутиках, капсуле и клеточной стенке бактерий. Антигены мембран и внутриклеточных структур бактериальных клеток изучены недостаточно.

Жгутиковые антигены (Н-антигены) представляют собой белок (флагеллин) с молекулярным весом 20 000— 40 000, состоящий из альфа- и бета-полипептидных цепей. При аналитическом ультрацентрифугировании флагеллин образует один гомогенный пик с коэффициентом седиментации 1,5—1,68. При нагревании до t° 100° в сильно кислой или щелочной среде жгутиковые антигены инактивируются.

Предполагают, что аминокислотный состав разных серотипов жгутиковых антигенов сальмонелл, эшерихий и других энтеробактерий различен и это определяет их типовую специфичность. На различии в специфичности жгутиковых антигенов построена классификация серотипов сальмонелл. Изолированные жгутики энтеробактерий, холерного вибриона и других бактерий реагируют как Н-антиген (см.

Жгутики бактериальные), однако фракция жгутиков содержит всегда примесь О-антигена. Жгутики и флагеллин S- и R-форм Proteus mirabilis содержат общий и различающийся антигенные компоненты. Антигенная специфичность зависит от соединения и последовательности субъединиц флагеллина жгутиковой нити. Методом иммунодиффузии (см.

) у Н-антигена выявляются два компонента. При помощи препаративных иммунохимических методов можно получить Н-антиген, очищенный от О-антигена. Очищенный Н-антиген не обладает протективной активностью в опытах на лабораторных животных. Растворимые жгутиковые антигены используют для приготовления эритроцитарных Н-диагностикумов.

Капсульные антигены (К-антигены) многих бактерий типоспецифичны и стимулируют специфический иммунитет (см.). Многие из капсульных антигенов являются полисахаридами или мукопептидами.

Капсульные антигены пневмококков — типоспецифические полисахариды, в изолированном виде обладают свойствами гаптенов (см. Гаптены) и обозначаются как растворимая специфическая субстанция (SSS). В капсуле возбудителя сибирской язвы имеются гаптен-пептид, а также антигены белково-полисахаридной природы, чувствительные к протеолитическим ферментам.

Капсульный глутамиловый полипептид, обнаруженный у Вас. megaterium, обладает свойствами антигена, перекрестно реагируя с антигенами клеточной стенки этого же микроба. Капсульные антигены полисахаридной природы выявлены у микробов рода Acetobacter. Эти антигены перекрестно реагировали с антисыворотками к стрептококкам группы В и G, а также к пневмококкам 23-го типа. Перекрестная серол, реакция обусловлена наличием в антигенах общей детерминантной группы — L-рамнозы.

Установлены перекрестные реакции между капсульными полисахаридными антигенами менингококков группы А и Вас. pumilus, менингококками группы С и E. coli 016 : NM, пневмококками типа III и E. coli К7 и др.

В капсуле (точнее микрокапсуле) энтеробактерий обнаружены полисахаридные антигены: Vi-антиген (см.) у S. typhi, S. paratyphi С, E. coli, E. ballerup, В(К)-антигены у эшерихий, К-антигены у клебсиелл. У нек-рых сальмонелл обнаружены капсульные антигены белковой природы, которые обладают протективными свойствами (S. typhimurium, S. adelaide, Citrobacter). Капсульные полисахаридные антигены К. pneumoniae обладают адъювантным эффектом (см. Адъюванты).

В клеточной стенке многих видов микробов выявлены типо-, группо-, видо- и родоспецифические антигены. Согласно схеме Краузе (R. М. Krause, 1963) клеточная стенка стрептококка содержит типоспецифические белковые антигены (М-субстанция) и группоспецифические антигены полисахаридной природы. М-антиген (насчитывается до 60 типов) является протективным антигеном;

в частично очищенном виде предложен в качестве вакцины. Проведенная амер. учеными проверка вакцины, состоящей из частично очищенного М-антигена, показала, что препарат вызывал у части привитых детей ревматизм. По данным ряда авторов, М-антиген тесно связан с антигеном, перекрестно реагирующим с антигеном сердечной мышцы человека.

Предполагают, что перекрестно реагирующий антиген и М-антиген являются разными детерминантами одной белковой молекулы. Обнаружено также, что между M-антигеном стрептококка первого типа группы А и системой HLA лимфоцитов человека имеется связь. Другим группоспецифическим антигеном клеточной стенки стрептококков является мукопептидный антиген, специфичность которого обусловлена N-ацетилглюко-замином (для стрептококков группы А) и N-ацетилгалактозамином (для стрептококков группы С). Группоспецифическим антигеном молочнокислых стрептококков является внутриклеточная тейхоевая кислота.

Бледная трепонема

Бактерии в кишечнике

Микроорганизмы бледной спирохеты являются возбудителями тяжелого венерического заболевания – сифилиса. Их отличие от других одноклеточных заключается в необычном строении. Бактерия закручена в спираль и при движении сокращается и изгибается подобно змее. Трепонема не нуждается в кислороде и прекрасно чувствует себя в человеческом организме.

Основной путь бактериального заражения – половой контакт. Однако передача инфекции может произойти и в бытовых условиях (через средства личной гигиены), при процедуре переливания крови, а также внутриутробно, от зараженной матери плоду. В наше время заболевание легко излечимо на I и II стадии, но III этап чреват серьезными последствиями с необратимыми изменениями во всем организме.

Как делятся, размножаются бактерии: схема

  • Способ размножения бактерий присущ всем одноклеточным организмам – это деление. Оно дает существование двум дочерним клеткам, которые в свою очередь повторяют этот процесс, тем самым каждый раз удваивая количество.
  • Существует также процесс, при котором образовываются споры. Это происходит при наличии неблагоприятных условий, когда цитоплазма способна образовать, покинув материнскую оболочку, новую, которая является более плотной. Такая клетка называется спорой. Если она попадает в благоприятную среду, то возможно ее прорастание и образование полноценной бактерии.

Размножение

Из чего состоят бактерии?

  • Клеточная стенка бактерии содержит полисахариды, белки, липиды. В основном же стенка состоит из многослойного пептидогликана. Также стенка содержит наружную мембрану, которая своей трехслойной структурой похожа на цитоплазматическую (внутреннюю) мембрану. Обе мембраны состоят преимущественно из липидов.
  • Наружная мембрана изнутри состоит из фосфолипидов, наружный слой – это липополисахариды. Пространство между мембранами заполнено ферментами. Внутренняя мембрана имеет три слоя, ее структура – это фосфолипиды в два слоя и интегральные белки.

Состав

  • Цитоплазму составляют белки, рибонуклеиновые кислоты, рибосомы. Также наличествуют запасные питательные вещества: гликоген, волютин, полисахариды.
  • Аналогом ядра можно назвать нуклеоид, находящийся в центре и представляющий собой закольцованную двунитевую ДНК. У нуклеоида отсутствует ядерная оболочка и ядрышко. Не представлены и гистоны.
  • В составе бактерий также можно наблюдать слизистую структуру с четкими границами, которую называют капсулой. В ее составе полисахариды, полипептиды.
  • Жгутик – это тонкая нить, длиннее самой клетки (до 15 мкм), начинающаяся с внутренней мембраны. Жгутики достигают в толщину всего 20 нм и имеют диски, с помощью которых крепятся к стенке.
  • И, наконец, неблагоприятные условия для бактерии могут провоцировать образование спор в бактериальной клетке, которые способны не только длительное время сохраняться, но и прорастать.
Понравилась статья? Поделиться с друзьями:
MinProduct.ru